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Abstract
This study compares four data-driven methods, Gaussian process regression (GPR), mul-
tivariate adaptive regression spline (MARS), M5 model tree (M5Tree), and multilinear 
regression (MLR), in estimating mean velocity upstream and downstream of bridges. 
Data were obtained through multiple experiments in a rectangular laboratory flume with 
glass walls 9.5 m long, 0.6 m wide, and 0.6 m deep. Four different bridge models were 
placed at the 6th meter of the channel to determine the average velocities upstream and 
downstream. Different data-driven models were implemented with different combina-
tions of effective parameters as input. They were evaluated and compared using root mean 
square error (RMSE), mean absolute relative error (MARE), and Nash–Sutcliffe efficiency 
(NSE). The results showed that the MARS had the best efficiency in estimating the mean 
velocity upstream of the bridge model. At the same time, the M5Tree provided the highest 
performance in estimating the mean velocity downstream. The MARS method improved 
the estimation accuracy of GPR, M5Tree, and MLR in the test phase by 23.8%, 45.1%, and 
47.4% concerning the RMSE at the upstream. The M5Tree provided better RMSE accu-
racy of 31.8%, 70.4%, and 75.5% at the downstream compared to MARS, GPR, and MLR, 
respectively. The study recommends the MARS and M5Tree for estimating mean velocities 
upstream and downstream of the bridge.
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1 Introduction

Bridges are important components of the transportation system that provide daily 
public mobility, food, medical, and other supplies, welfare, commerce, industry, and 
various cultural activities at different spatial scales (Chang et  al. 2012). Therefore, 
these structures require careful planning, design, and maintenance. Despite significant 
improvements and the development of new recommendations and guidelines for bridge 
design, the number of bridge failures worldwide remains high (Zhang et  al. 2022). 
The age of collapsed bridges can be from 1 to over 100 years old, which depends on 
many factors (Wardhana and Hadipriono 2003). Bridge failure significantly impacts the 
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transportation system and causes accidents and loss of life; thus, it significantly affects 
the country’s economic growth (Diaz et  al. 2009). The causes of the bridge failure 
may include incorrect design, defects during construction (i.e., not correct material 
type), floods, earthquakes, terrorist attacks, and overloads (Deng et  al. 2016; Diaz 
et al. 2009; Kabir et al. 2023). In general, man-made external events such as overloads 
frequently occur at various points in the upper structure of the bridge; nevertheless, 
flooding and scouring are the main causes of the bridge’s failure (Elvik et  al. 2019; 
Loli et  al. 2022; Montalvo et  al. 2020; Wei-bing et  al. 2019). Heavy rainfall usually 
results in peak flows that trigger bridge collapse in various ways, including scouring, 
insufficient embedment depth, river convergence, debris impact, and abrasion on the 
bridge foundation (Ardiclioglu et  al. 2022; Ario et  al. 2022; Zhang et  al. 2022). For 
example, the heavy rains in Japan in July 2018 caused massive and widespread damage 
to social infrastructure and lifelines where it was found that the hydrodynamic force 
that acted on the bridge girder during the flood and caused the collapse of many 
bridges (Ario et  al. 2022; Lu et  al. 2022; Nezaratian et  al. 2023). Therefore, a better 
understanding of hydraulics in bridge structures is key to avoiding errors in the design 
phase and during the bridge’s operation. A better understanding of the hydraulics in 
bridge structures requires repeated numerical modeling, experimental studies, and, most 
importantly, long-term monitoring (Kabir et al. 2022; Zanello et al. 2011). Nevertheless, 
long-term data collection of key hydraulic components, such as velocity, is costly 
and time-consuming. Therefore, many studies show that alternative methods, such 
as data-driven models, are cost-effective in predicting various hydraulic parameters 
with acceptable accuracy (Sun et  al. 2021; Wang and Elhag 2008). Wang and Elhag 
(2006) proposed a fuzzy TOPSIS method for bridge risk assessment. They found 
that the proposed method outperformed other fuzzy versions of the TOPSIS method. 
Elhag and Wang (2007) performed a risk assessment of 506 bridges by comparing 
artificial neural networks with regression techniques. They found that neural networks 
performed better than regression models in accuracy. Cardellicchio et  al. (2023) used 
data-driven methods to detect reinforced concrete bridge (RC) defects. Their results 
suggest that data-driven techniques are very effective in assessing risk and assisting 
road management companies and public organizations in evaluating the condition 
of the road network. Mojaddadi et  al. (2017) evaluated an ensemble method of data-
driven models, namely the Frequency Ratio (FR) approach, combined with a Support 
Vector Machine (SVM) using a radial basis function kernel to estimate different 
flood components considering several conditioning parameters. The results indicated 
that the proposed approach can effectively manage flood risk in different regions. 
Costache (2019) compared adaptive neuro-fuzzy inference systems and hybrid fuzzy 
support vector machines with two bivariate statistical models for flood susceptibility 
assessment. The results showed that the fuzzy support vector machine performs better 
than the other models. Yousefpour et  al. (2021) applied three data-driven techniques 
to predict scours around bridge piers using real-time monitoring data. Their results 
indicated that neural networks successfully predicted maximum scour depth, and the 
prediction accuracy was significantly improved by incorporating new data-driven 
algorithms. Kumar et al. (2023) investigated the time-dependent scour depth around the 
bridge’s piers using ensemble and individual data-driven methods. Their results showed 
that ensemble methods provided higher prediction accuracy than the single methods 
and empirical equations. Khosravi et  al. (2021) evaluated scour depth and tested five 
novel hybrid algorithms using scour depth data from flume experiments and various 
hydraulic parameters; the five data-driven techniques performed well. Other studies 
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have also reported that data-driven techniques perform better than regression models 
in scour depth prediction (Bonakdari et al. 2020; Tola et al. 2023). As far as we know, 
most studies using data-driven techniques to investigate flow-structure interactions in 
bridges are mainly related to phenomena such as scour and drawdown but not to specific 
hydraulic parameters such as Froud number or flow velocity (Atashi et al. 2023; Tola 
et al. 2023). Therefore, the main objective and contribution of this study are to evaluate 
four data-driven methods, multivariate adaptive regression spline (MARS), M5 model 
tree (M5Tree), Gaussian process regression (GPR), and multilinear regression (MLR), 
for predicting the mean velocity at the upstream and downstream of a bridge model 
structure built in a channel using monitoring data from experiments. The following parts 
of the study was organized as follows: Sect. 2 explains the experimental procedures and 
gives brief information about the data-driven techniques; Sect. 3 shows the main results 
and discusses the relevance of our findings compared to similar studies. Finally, Sect. 4 
summarizes the study’s main results and contribution and provides recommendations 
for future research.

2  Materials and Methods

2.1  Experimental Setup

Experiments were conducted in a rectangular laboratory channel with glass walls 0.6 m 
wide, 9.5 m long, and 0.6 m deep at the Hydraulics Laboratory, Erciyes University, Turkey. 
Water flow through the flume was measured using a UFM-600 ultrasonic current meter 
mounted on the pipe carrying water from a constant head tank to the inlet of the flume. A 
Tripod-mounted point meter that can freely move in 3D was used for measuring velocities 
and water surface profiles (Fig. 1a). Streamflow Velocity Meter 400 type "Low-Speed Pro-
peller Probe" was used to measure flow velocities. To accurately determine point velocities 
during the measurements, the average frequency was obtained on the digital display every 
10 s; this procedure was repeated multiple times at every point, and velocities were then 
resolved using the average of the multiple frequencies.

Bridge models with rectangular cross-sections and four openings ranging M = b/B = 0.58, 
0.67, 0.75, 0.83 were utilized, where B and b are the width of the channel (here 60 cm) and 
the span of the bridge, respectively. The width of the bridge deck (Wb), made of wood, is  
5 cm. The bridge models were positioned at the 6th m downstream of the channel to observe 
the mean velocities up/downstream and to investigate the effects of the bridge structure on 
the variations of the water level profile. Velocities were measured at the 1 cm upstream of the 
up/downstream sides of the bridge section at the midpoint of the bridge span (Fig. 1b). As 
can be observed from Table 1, velocity measurements were done for five distinct flow condi-
tions in steady-state (Hadi and Ardiclioglu 2018).

Where V (Q/A) is average flow velocity,  hn is uniform water depth, Q is discharge, A is 
a wetted area of cross-section, S is the slope of channel, Re (= 4VR/υ) is Reynolds number 
with hydraulic radius of R(= A/P), P is the wetted perimeter, (kinematic viscosity) and Fr 
(= V/(gℎ)0.5, Froude number) with g (the acceleration due to gravity). Mean velocities were 
observed for five different discharges with four distinct b/B ratios at the up/downstream 
portions at the midpoint of the spans. The average velocities for different discharges and 
openings are given in Fig. 2.
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The average velocity (V) in a vertical is determined from velocity observations at dif-
ferent points in each vertical. In the method of vertical velocity curve, measurements were 
made for each selected vertical at points well distributed between the riverbed and water 
surface. The mean velocity in the vertical (Vu upstream or Vd downstream) is calculated by 
obtaining the area between the ordinate axis and curve and then computing the area/flow 
depth ratio in that vertical utilizing Eq. (1).

a)

Fig. 1  The experimental flume and equipment for measurement
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In Eq. (1), two successive velocities,  vi and  vi+1, and for a depth  hi, indicate the dis-
tance between successive velocity measurement points. The mean velocities at the down-
stream and upstream were determined by taking the mean values of the average velocities 
obtained for each opening using Eq. (2).

In this equation, Vu is the average upstream velocity, Vd is the average downstream 
velocity, and j is the number of openings. Measured average velocities for five different 
discharges and four different opening mid-sections are given in Table 2.

(1)Vu,d =

∑ (vi+vi+1)
2

hi

h

(2)Vu,d =

∑
j Vu,d

j

Table 1  Characteristics of 
flow measured for distinct flow 
conditions

Test Q
(lt/s)

hn
(cm)

V = Q/A
(m/s)

S Re Fr

1 7.16 3.45 0.346 0.001 42387 0.595
2 14.2 5.31 0.446 0.001 79634 0.618
3 21.23 6.88 0.514 0.001 113990 0.626
4 28.47 8.34 0.569 0.001 147043 0.629
5 34.27 9.42 0.606 0.001 172150 0.631

Fig. 2  Upstream and downstream average velocities for different discharge and opening
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2.2  Data‑Driven Techniques

2.2.1  Multivariate Adaptive Regression Splines (MARS) Approach

MARS is a nonlinear/nonparametric method capable of modeling nonlinear sys-
tems. This method does not assume a functional relationship between independ-
ent and dependent variables. MARS is composed of piecewise linear segments or 
splines that are seamlessly connected. These splines (e.g., polynomials) are called 
BFs (basis functions), which can provide flexibility in handling linear or nonlinear 
behaviors. The connections of the pieces are named nodes. They mark the end of one 
data region and the beginning of another. Candidate nodes are randomly positioned 
within each input range. A node marks the end of one data region and the beginning 
of another (Friedman 1991).

The MARS can map complex and high-dimensional data. It can provide a simple 
interpretable model and calculate the contribution of each input variable. The main aim 
of this method is to estimate the amounts of a continuous dependent variable, y (n × 1) 
from independent explanatory variables, x(n × p). The model can be given as follows:

f refers to a weighted sum of basic functions depending on x, and e indicates the error vec-
tor with an (n × 1) dimension.

MARS generates BFs by stepwise searching all possible univariate candidate nodes 
and via interactions between all considered variables. It uses an adaptive regression 
method to choose node positions automatically. The MARS has two phases: forward 
and backward. In the phase forward, candidate nodes are randomly positioned within 
each input range to provide BFs pairs. At every step, the model adjusts the node and 
the related pair of BFs to reduce the residual error in the sum of squares. In the forward 
phase, excessive BFs can be added to reduce error, and this can cause overfitting. This 
problem is solved in the backward phase by eliminating the BFs having the least contri-
butions (Zhang and Goh 2016).

2.2.2  M5 Model Tree (M5Tree) Approach

The M5 model tree, first developed by Quinlan (1992), is a data mining method. This 
method uses a binary decision tree with linear equations at the terminal (or leaf) nodes. 
Using such equations, a relationship is estimated between dependent and independent 
variables. It can handle quantitative data (Mitchell 2007). Like the MARS method, con-
structing the M5 model tree requires two distinct phases (Solomatine and Xue 2004). 
Data is portioned into subsets in the first phase, and a decision tree is generated. The 
split criterion treats the standard deviation (SD) of the class values reaching a node as 
an error measure at that node and computing the expected reduction due to testing each 
attribute. M5 is a recursive algorithm that constructs the regression tree by partitioning 
the space using the SD reduction (SDR) factor, the maximum reduction in output error 
after branching. The equation for calculating the standard deviation reduction (SDR) is 
expressed as:

(3)y = f(x) + e
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where T stands for a set of examples reaching the node, Ti for the subset of examples hav-
ing the i−th result of the potential set, and sd for the SD, due to the split process, the SD of 
the data in the child nodes (lower nodes) is lower than that in the parent node. The best one 
maximizing the expected error reduction is selected among the considered splits. However, 
this splitting often results in a large tree-like structure that can lead to overfitting or poor 
generalization. To overcome this, the second phase is to prune the oversized tree and then 
replace the pruned subtrees with linear equations (Rahimikhoob et al. 2013).

2.2.3  Gaussian Process Regression (GPR)

The GPR is a nonparametric model for solving nonlinear regression problems (Williams 1997). 
This method regresses the inputs and output by directly defining a prior probability distribution 
over a latent function. The following equation can express it:

where m(x) is the mean function (MF) and k(x, x�) is a covariance kernel function (CKF). 
The MF encoding central tendency of the function is generally accepted as 0 (Zhang et al. 
2016). The CKF encodes information about the expected function’s structure and shape. 
The following equation defines the relationship between inputs and outputs:

where ε is a noise, is assumed to be independent, and has a Gaussian distribution with a 0 
mean. Variance ( �2

n
 ) is distributed over it:

From Eq. (5), the likelihood can be provided as follows:

where y = [y1, y2, …, yn]T, f = [f(x1), f(x2), …, f(x3)] and I is a unit matrix with a M × M 
dimension. In the GPR method, the kernel function is selected based on the assumptions 
about the model, and the Gaussian kernel is mostly used. Hyper-parameters of kernel func-
tion are computed by maximum likelihood estimation (Karbasi 2018; Shadrin et al. 2021).

3  Results

In this study, four data-driven methods, multivariate adaptive regression spline (MARS), 
M5 model tree (M5Tree), Gaussian process regression (GPR), and multilinear regression 
(MLR), were implemented to estimate the mean velocity upstream and downstream of a 
bridge model using data from experiments. The models were applied using MATLAB soft-
ware. The models were tested to estimate the mean velocity with different combinations of 
influential input parameters such as h, Vup, y, b/B, Fr, Re, and B/hn. The input combina-
tions were determined by adding one variable at each time to determine the influence of 

(4)SDR = sd(T) −
∑ ||Ti||

|T|
sd(Ti)

(5)f (x) ∼ GP
(
m(x), k(x, x�)

)

(6)y = f (x) + E

(7)E ∼ N(0, �2

n
)

(8)N(y|f ) = N
(
y|f , �2

n
I
)
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the variables on the mean velocity. The models were evaluated using the following statis-
tics: Eqs. (4)–(6):

where Vm is the mean of measured velocity, Vic is calculated velocity, Vim is measured 
velocity, and N refers to the quantity of data. The performance statistics of the implemented 
data-driven methods are summarized in Tables 4, 5, 6, 7, 8, 9, 10 and 11 for estimating the 
mean velocity upstream of the bridge model using different input combinations. The model 
with minimum inputs (h,  Vup) performs the worst for the MARS method. In contrast, the 
models by input combination iv have the smallest RMSE, MARE, and the highest NSE in 
the training and testing phases. The three MARS models have a marginal difference, hav-
ing 5 to 7 input variables. In this study, we selected the MARS model with input combina-
tion iv as the best model because it requires fewer inputs than the other two alternatives. 
The performance statistics of the M5Tree (Table 4) clearly show that the model with inputs 
h,  Vup, y, b/B, and Fr has the best accuracy in estimating the mean velocity at the upstream 
of the bridge model in both training (RMSE = 0.082 m/s, MARE = 1.052, NSE = 0.9914) 
and testing (RMSE = 0.0222 m/s, MARE = 3.836, NSE = 0.9417). Beyond this combina-
tion, the accuracy of the M5Tree is not improved, like the results of the method MARS. 
Among the GPR models listed in Table  5, the model with 5 inputs (h,  Vup, y, b/B, Fr) 
has the lowest RMSE and MARE and the highest NSE in the training and testing phases. 
The results of MARS, M5Tree, and GPR methods show that including the Froude num-
ber in the model input significantly improves the accuracy in estimating the mean veloc-
ity. The improvement in accuracy of MARS, M5Tree, and GPR for input combination iii 
to iv is 41.4%, 42.8%, and 82.7%, respectively, in terms of RMSE in the test phase. The 
performance statistics of the simple MLR method are summarized in Table 6. Unlike the 
previous methods, MLR provided the best accuracy (RMSE = 0.0232 m/s, MARE = 5.263, 
NSE = 0.936) for the full input variables (h,  Vup, y, b/B, Fr, Re, B/hn). A comparison of the 
four methods shows that the MLR is the worst method for estimating the mean velocity 
upstream of the bridge model. In contrast, the MARS method provided the best accuracy, 
followed by the GPR and M5Tree. The model MARS with inputs h,  Vup, y, b/B, and Fr 
improves the estimation accuracy of the best GPR, M5Tree, and MLR by 23.8%, 45.1%, 
and 47.4%, respectively, in terms of RMSE in the test phase.

The best data-driven models are compared in Fig. 3 with their velocity estimates. From 
the figure, the estimates of the MARS are closer to the observed values compared to the 
M5Tree, GPR, and MLR. The superiority of GPR over M5Tree and MLR can also be seen 
in this figure. The estimates of the same models are compared in Fig. 4 in the form of a 
scatter plot. The MARS method has the least scattered velocity estimates upstream of the 
bridge model, with the lowest coefficient of determination  (R2 = 0.985). In contrast, the 
MLR model performs the worst.

(9)Root mean square error = RMSE =

�∑N

i=1
(Vim − Vic)

2

N

(10)Mean absolute relative error = MARE =

∑N

i=1
�Vim−Vic�.100∕Vim

N

(11)Nash − Sutclif fe ef f iciency = NSE = 1 −

∑N

i=1
(Vim − Vic)

2

∑N

i=1
(Vim − Vm)

2
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Fig. 3  Comparison of observed and predicted upstream mean velocities by data-driven methods in the test 
stage
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Tables 7–11 show the training and testing performances of the four data-driven meth-
ods in estimating the mean velocity downstream of the bridge model. Again, the MARS 
model with five inputs (input combination iv) provided the best accuracy, and adding more 
inputs did not improve the accuracy. Comparison of input combinations iv and v shows 
that including the Froude number improved the accuracy in the test phase by 58.7%, 53%, 
and 37.1% in terms of RMSE, MARE, and NSE, respectively. Table  7 shows that the 
M5Tree model provided the lowest RMSE and MARE and the highest NSE in the train-
ing and testing phases of the 5th input combination (h,  Vdown, y, b/B, Fr, Re). Also, for this 
model, adding the Froude number improved the model accuracy in the test phase by 67.8%, 
74.5%, and 31.4% in terms of RMSE, MARE, and NSE, respectively. Like the MARS 
model, the GPR model with inputs h,  Vdown, y, b/B, and Fr (input combination iv) was also 
the best (Table 8) in estimating the mean velocity downstream of the bridge model. For 
this method, including the Froude number in the model inputs improved the accuracy of 
RMSE, MARE, and NSERMSE, MARE, and NSE by 37.6%, 41.9%, and 152.5%, respec-
tively, in the test phase. As can be seen in Table 9, the MLR model offered the best perfor-
mance for input combination iv. Again, the MARS, M5Tree, and GPR outperformed the 

Fig. 4  Scatterplots of observed and predicted upstream mean velocities in the test stage by data-driven 
methods
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Fig. 5  Comparison of observed and predicted downstream mean velocities by data-driven methods in the 
test stage
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MLR in estimating the mean velocity downstream of the bridge model. Among the data-
driven methods, the M5Tree performed better than the others. The improvements in the 
accuracy of the best MARS, GPR, and MLR models by implementing the M5Tree model 
are 31.8%, 70.4%, and 75.5%, respectively, regarding the RMSE in the test phase.

Figure  5 compares the mean velocity estimates of the best data-driven models 
downstream of the bridge model. The M5Tree estimates are closer to the observed val-
ues than the other methods, and GPR and MLR do not capture the measurements well. 
The scatter plots of the data-driven methods are shown and compared in Fig. 6. The 
least scattered estimates belong to the M5 tree with the highest coefficient of determi-
nation  (R2 = 0.977). In contrast, the GPR and MLR methods provide inadequate esti-
mates. Figure 9 illustrates the errors of the data-driven methods in estimating the mean 
velocities at the upstream and downstream of the bridge model. The figure shows that 
the MARS and M5Tree methods have the best accuracy in estimating the velocities. In 
contrast, as expected, the MLR method produces the highest errors because the rela-
tionship between velocity and the influential parameters is nonlinear.

Fig. 6  Scatterplots of observed and predicted downstream mean velocities in the test stage by data-driven 
methods
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Taylor diagrams were employed to facilitate a comprehensive comparison of the mod-
el’s performance, as illustrated in Fig.  7. These diagrams offer a valuable visualization 
tool for evaluating the accuracy of the models through the lenses of RMSE, standard 
deviation, and correlation. Upon examination, it becomes evident that the MARS method 
boasts the strongest correlation and minimal squared error when estimating mean veloci-
ties in upstream and downstream contexts. Moreover, the assessment of model predictions 
and observed values was undertaken through violin charts, as depicted in Fig.  8. This 
graphical representation effectively contrasts the distributions of predictions and observa-
tions generated by the various models. A notable observation from this figure is that the 
MARS model exhibits a striking resemblance to the observed values in terms of mean, 

Fig. 7  Taylor diagram of the metaheuristic regression approaches and MLR in the test stage of upstream 
and downstram: A: Observed, B: MARS, C: M5Tree, D: GPR, and E: MLR

Fig. 8  Violin charts of the metaheuristic regression approaches and MLR in the test stage at upstream and 
downstream of the bridge model
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median, and overall distribution, reinforcing its accuracy and capability in capturing the 
mean velocities in both the upstream and downstream of the bridge model.

The results were subjected to additional validation using a one-way analysis of variance 
(ANOVA) to assess the robustness of the models in terms of the significance of discrepan-
cies between the estimated and observed values. Both tests were conducted with a confi-
dence level of 95%. In specific terms, deviations between the predicted and actual values 
were deemed significant when the resulting p-value fell below 0.05, employing a two-tailed 
significance approach. The statistical outcomes of these tests are presented in Table 11. In 
the case of upstream velocity estimation, the MARS model demonstrated modest testing 
values (0.0053) alongside a notably high significance level (0.942) (Table 3). Conversely, 
for downstream velocity, the M5Tree model exhibited the smallest testing value (0.0051) 
coupled with the highest significance level (0.943), followed by the MARS model. These 
test findings suggest that, in terms of the mean velocity of the bridge model, the MARS 
and M5Tree methods exhibit higher robustness than the other methods.

4  Discussion

The study aimed to estimate the mean velocity at the upstream and downstream of a bridge 
model using four data-driven methods: multivariate adaptive regression spline (MARS), 
M5 model tree (M5Tree), Gaussian process regression (GPR), and multi-multi-linear 
regression (MLR). These methods were implemented and evaluated based on their accu-
racy in estimating velocities using experimental data. The study found that the MARS 
method consistently outperformed the other methods in estimating upstream and down-
stream mean velocities of the bridge model. This was particularly notable when com-
paring the input combinations of variables. Adding the Froude number (Fr) as an input 
parameter substantially impacted the accuracy of the MARS, M5Tree, and GPR methods. 
The improvement in accuracy ranged from 41.4% to 82.7% in terms of RMSE, which is 
a significant enhancement. Comparing the methods, the study concluded that the MARS 
method performed the best in accuracy, followed by GPR and M5Tree. MLR consistently 
yielded the lowest accuracy among the tested methods. The nonlinearity of the investigated 
phenomenon can explain this.

The study also employed various visualizations to understand the results better. 
Figures  4 to 9 showcase the comparison between different methods’ velocity esti-
mates, scatter plots of the estimates, variation graphs, and error illustrations. These 

Table 3  Analysis of variance for 
estimating the mean velocity of 
the bridge model

Method Upstream Downstream

F-Statistic Resultant 
Significance 
Level

F-Statistic Resultant 
Significance 
Level

MARS 0.0053 0.942 0.0172 0.896
M5Tree 0.0364 0.849 0.0051 0.943
GPR 0.0430 0.836 1.5175 0.221
MLR 0.0219 0.882 1.2687 0.263

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



 O. Kisi et al.

1 3

visual aids reinforced the findings and highlighted that the MARS and M5Tree meth-
ods consistently yielded the most accurate estimates. At the same time, GPR and 
MLR fell short of capturing the actual velocity patterns. Nevertheless, it was evi-
dent that all four methods could not accurately capture certain extreme velocity val-
ues downstream and upstream. As previously highlighted in other research (Adnan 
et  al. 2020), the data-driven methods—MARS, M5Tree, GPR, and MLR—are reli-
ant on the amount of available data. Within the training dataset, extreme velocities 
are limited, which hinders the models’ ability to grasp the underlying phenomenon 
fully. This challenge could potentially be mitigated by incorporating a larger volume 
of experimental data.

It is important to understand the behavior of flow and turbulence characteristics near 
bridge piers. Measurements of upstream and downstream flow help explain how velocity 
changes affect scour development around the base of bridge piers. These velocities provide 
important information for understanding scour mechanisms and designing future structures 
to increase bridge safety and resilience (Carnacina et al. 2019). The applications show that 
the MARS and M5Tree models can successfully estimate the mean velocity using the input 
parameters h,  Vup, y, b/B, Fr, and Re.

5  Conclusions

This study investigated the ability of four data-driven methods to estimate mean veloc-
ity at the upstream and downstream of bridges using experimental data and influential 
parameters (h,  Vup, y, b/B, Fr, Re, B/hn). Various combinations of the above influential 
parameters were used as inputs to the MARS, M5Tree, GPR, and MLR models, consid-
ering the correlations between inputs and outputs. Fr number was very effective in esti-
mating mean velocity upstream and downstream. Including the Fr, improvements were 
obtained for the MARS, M5Tree, and GPR as 41.4%, 42.8%, and 82.7% at the upstream 
and 58.7%, 67.7%, and 37.6% at the downstream, respectively, concerning the RMSE in 
the test phase. Evaluation of the methods showed that the MARS model with inputs of h, 
 Vup, y, b/B, and Fr provided the best accuracy in estimating the mean velocity upstream 
of the bridge. In contrast, the M5Tree model had the highest performance in estimating 
downstream mean velocity. It was found that the MLR model did not model the mean 
velocities well due to the complexity of the phenomenon studied. The relative RMSE 
between the MARS and the other models (GPR, M5Tree, MLR) was 23.8%, 45.1%, and 
47.4% at the upstream in the test phase, respectively. In contrast, the corresponding val-
ues between the M5Tree and other models (MARS, GPR, MLR) were 31.8%, 70.4%, and 
75.5% at the downstream, respectively. This study recommends using MARS and M5Tree 
models for estimating the mean velocities at the upstream and downstream of the bridge 
with the MARS and M5Tree models.

In the presented study, the effect of bridge piers on the flow in rectangular chan-
nels was investigated. In future studies, trapezoidal channels can also be investi-
gated, and the implemented methods can be assessed using more experimental data to 
improve efficiency.
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Appendix

Fig. 9  Prediction errors produced by the metaheuristic regression approaches and MLR in the test stage a 
upstream and b downstream

Table 4  Error statistics of MARS in estimating the mean velocity of bridge upstream using different input 
combinations

Input combination Training Testing

RMSE, m/s MARE, % NSE RMSE, m/s MARE, % NSE

h, Vup, 0.0255 4.563 0.9174 0.0250 5.275 0.9263
h, Vup, y 0.0255 4.563 0.9174 0.0250 5.275 0.9263
h, Vup, y, b/B 0.0252 4.251 0.9193 0.0208 4.340 0.9489
h, Vup, y, b/B, Fr 0.0087 1.861 0.9903 0.0122 2.612 0.9825
h, Vup, y, b/B, Fr, Re 0.0086 1.777 0.9905 0.0120 2.526 0.9830
h, Vup, y, b/B, Fr, Re, B/hn 0.0085 1.787 0.9909 0.0120 2.596 0.9829
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Table 5  Error statistics of M5Tree in estimating the mean velocity of bridge upstream using different input 
combinations

Input combination Training Testing

RMSE, m/s MARE, % NSE RMSE, m/s MARE, % NSE

h, Vup, 0.0247 4.090 0.9224 0.0300 6.099 0.8939
h, Vup, y 0.0242 3.900 0.9256 0.0301 6.056 0.8927
h, Vup, y, b/B 0.0170 2.713 0.9634 0.0388 6.995 0.8224
h, Vup, y, b/B, Fr 0.0082 1.052 0.9914 0.0222 3.836 0.9417
h, Vup, y, b/B, Fr, Re 0.0082 1.052 0.9914 0.0222 3.836 0.9417
h, Vup, y, b/B, Fr, Re, B/hn 0.0082 1.052 0.9914 0.0222 3.836 0.9417

Table 6  Error statistics of GPR in estimating the mean velocity of bridge upstream using different input 
combinations

Input combination Training Testing

RMSE, m/s MARE, % NSE RMSE, m/s MARE, % NSE

h, Vup, 0.0568 10.98 0.5893 0.0405 9.572 0.8056
h, Vup, y 0.0815 17.82 0.1552 0.0898 19.66 0.0463
h, Vup, y, b/B 0.0742 16.41 0.3003 0.0922 19.81 -0.0044
h, Vup, y, b/B, Fr 0.0136 2.897 0.9763 0.0160 3.674 0.9695
h, Vup, y, b/B, Fr, Re 0.0887 19.22 -0.0001 0.0920 20.92 -0.0010
h, Vup, y, b/B, Fr, Re, B/hn 0.0887 19.22 -0.0001 0.0920 20.92 -0.0010

Table 7  Error statistics of MLR in estimating the mean velocity of bridge upstream using different input 
combinations

Input combination Training Testing

RMSE, m/s MARE, % NSE RMSE, m/s MARE, % NSE

h, Vup, 0.2197 46.40 -5.136 0.2526 49.96 -6.542
h, Vup, y 0.1600 32.89 -2.254 0.1805 36.96 -2.852
h, Vup, y, b/B 0.0872 20.03 0.0326 0.0884 19.00 0.076
h, Vup, y, b/B, Fr 0.0793 17.38 0.201 0.0855 18.62 0.135
h, Vup, y, b/B, Fr, Re 0.0308 6.882 0.8790 0.0333 7.778 0.869
h, Vup, y, b/B, Fr, Re, B/hn 0.0205 4.277 0.9465 0.0232 5.263 0.936
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Table 8  Error statistics of MARS in estimating the mean velocity of the bridge downstream using different 
input combinations

Input combination Training Testing

RMSE, m/s MARE, % NSE RMSE, m/s MARE, % NSE

h, Vdown 0.1798 23.60 0.4180 0.1410 15.30 0.3838
h, Vdown, y 0.1408 18.58 0.6431 0.1571 17.96 0.2353
h, Vdown, y, b/B 0.1050 13.39 0.8015 0.0998 9.967 0.6912
h, Vdown, y, b/B, Fr 0.0583 7.191 0.9389 0.0412 4.688 0.9473
h, Vdown, y, b/B, Fr, Re 0.0597 7.758 0.9359 0.0432 5.016 0.9419
h, Vdown, y, b/B, Fr, Re, B/hn 0.0583 7.442 0.9388 0.0420 4.872 0.9454

Table 9  Error statistics of M5Tree in estimating the mean velocity of the bridge downstream using different 
input combinations

Input combination Training Testing

RMSE, m/s MARE, % NSE RMSE, m/s MARE, % NSE

h, Vdown 0.1629 19.63 0.5227 0.1376 13.49 0.4129
h, Vdown, y 0.1206 13.92 0.7381 0.1089 10.88 0.6323
h, Vdown, y, b/B 0.0765 7.413 0.8947 0.0915 9.687 0.7405
h, Vdown, y, b/B, Fr 0.0157 1.334 0.9956 0.0295 2.467 0.9730
h, Vdown, y, b/B, Fr, Re 0.0149 1.290 0.9960 0.0281 2.265 0.9755
h, Vdown, y, b/B, Fr, Re, B/hn 0.0157 1.334 0.9956 0.0295 2.467 0.9730

Table 10  Error statistics of GPR in estimating the mean velocity of the bridge downstream using different 
input combinations

Input combination Training Testing

RMSE, m/s MARE, % NSE RMSE, m/s MARE, % NSE

h, Vdown 0.1820 23.18 0.4042 0.1451 16.92 0.3474
h, Vdown, y 0.1669 21.26 0.4984 0.1546 18.10 0.2595
h, Vdown, y, b/B 0.1346 17.33 0.6739 0.1518 18.17 0.2858
h, Vdown, y, b/B, Fr 0.1068 13.00 0.7949 0.0948 10.55 0.7215
h, Vdown, y, b/B, Fr, Re 0.1306 14.06 0.6929 0.1077 10.31 0.6405
h, Vdown, y, b/B, Fr, Re, B/hn 0.1306 13.97 0.6932 0.1069 10.21 0.6457
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